Cargando…
Learning Ergodic Averages in Chaotic Systems
We propose a physics-informed machine learning method to predict the time average of a chaotic attractor. The method is based on the hybrid echo state network (hESN). We assume that the system is ergodic, so the time average is equal to the ergodic average. Compared to conventional echo state networ...
Autores principales: | Huhn, Francisco, Magri, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304724/ http://dx.doi.org/10.1007/978-3-030-50433-5_10 |
Ejemplares similares
-
Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
por: Fidaleo, Francesco
Publicado: (2018) -
Stability analysis of chaotic systems from data
por: Margazoglou, Georgios, et al.
Publicado: (2023) -
Learning Hidden States in a Chaotic System: A Physics-Informed Echo State Network Approach
por: Doan, Nguyen Anh Khoa, et al.
Publicado: (2020) -
Ergodic theory and dynamical systems
por: Coudène, Yves
Publicado: (2016) -
Ergodicity for infinite dimensional systems
por: Da Prato, G, et al.
Publicado: (1996)