Cargando…
On the Complementary Role of Data Assimilation and Machine Learning: An Example Derived from Air Quality Analysis
We present a new formulation of the error covariances that derives from ensembles of model simulations, which captures terrain-dependent error correlations, without the prohibitive cost of ensemble Kalman filtering. Error variances are obtained from innovation variances empirically related to concen...
Autores principales: | Ménard, Richard, Cossette, Jean-François, Deshaies-Jacques, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304728/ http://dx.doi.org/10.1007/978-3-030-50433-5_17 |
Ejemplares similares
-
Correction to ‘Learning earth system models from observations: machine learning or data assimilation?’
por: Geer, A. J.
Publicado: (2022) -
An operational urban air quality model ENFUSER, based on dispersion modelling and data assimilation
por: Johansson, Lasse, et al.
Publicado: (2022) -
A Framework for Four-Dimensional Variational Data Assimilation Based on Machine Learning
por: Dong, Renze, et al.
Publicado: (2022) -
Surface data assimilation of chemical compounds over North America and its impact on air quality and Air Quality Health Index (AQHI) forecasts
por: Robichaud, Alain
Publicado: (2017) -
Machine learning for data streams: with practical examples in MOA
por: Bifet, Albert, et al.
Publicado: (2017)