Cargando…

Lessons Learned in a Decade of Research Software Engineering GPU Applications

After years of using Graphics Processing Units (GPUs) to accelerate scientific applications in fields as varied as tomography, computer vision, climate modeling, digital forensics, geospatial databases, particle physics, radio astronomy, and localization microscopy, we noticed a number of technical,...

Descripción completa

Detalles Bibliográficos
Autores principales: van Werkhoven, Ben, Palenstijn, Willem Jan, Sclocco, Alessio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304729/
http://dx.doi.org/10.1007/978-3-030-50436-6_29
Descripción
Sumario:After years of using Graphics Processing Units (GPUs) to accelerate scientific applications in fields as varied as tomography, computer vision, climate modeling, digital forensics, geospatial databases, particle physics, radio astronomy, and localization microscopy, we noticed a number of technical, socio-technical, and non-technical challenges that Research Software Engineers (RSEs) may run into. While some of these challenges, such as managing different programming languages within a project, or having to deal with different memory spaces, are common to all software projects involving GPUs, others are more typical of scientific software projects. Among these challenges we include changing resolutions or scales, maintaining an application over time and making it sustainable, and evaluating both the obtained results and the achieved performance.