Cargando…
Quantum Hopfield Neural Networks: A New Approach and Its Storage Capacity
At the interface between quantum computing and machine learning, the field of quantum machine learning aims to improve classical machine learning algorithms with the help of quantum computers. Examples are Hopfield neural networks, which can store patterns and thereby are used as associative memory....
Autores principales: | Meinhardt, Nicholas, Neumann, Niels M. P., Phillipson, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304743/ http://dx.doi.org/10.1007/978-3-030-50433-5_44 |
Ejemplares similares
-
Storage Capacities of Twin-Multistate Quaternion Hopfield Neural Networks
por: Kobayashi, Masaki
Publicado: (2018) -
Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks
por: Gosti, Giorgio, et al.
Publicado: (2019) -
On the Maximum Storage Capacity of the Hopfield Model
por: Folli, Viola, et al.
Publicado: (2017) -
Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study
por: Kim, Do-Hyun, et al.
Publicado: (2017) -
The Hopfield-like neural network with governed ground state
por: Litinskii, Leonid B, et al.
Publicado: (2013)