Cargando…
Learning Hidden States in a Chaotic System: A Physics-Informed Echo State Network Approach
We extend the Physics-Informed Echo State Network (PI-ESN) framework to reconstruct the evolution of an unmeasured state (hidden state) in a chaotic system. The PI-ESN is trained by using (i) data, which contains no information on the unmeasured state, and (ii) the physical equations of a prototypic...
Autores principales: | Doan, Nguyen Anh Khoa, Polifke, Wolfgang, Magri, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304749/ http://dx.doi.org/10.1007/978-3-030-50433-5_9 |
Ejemplares similares
-
Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach
por: Doan, N. A. K., et al.
Publicado: (2021) -
Learning Ergodic Averages in Chaotic Systems
por: Huhn, Francisco, et al.
Publicado: (2020) -
Tailoring Echo State Networks for Optimal Learning
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2020) -
Stability analysis of chaotic systems from data
por: Margazoglou, Georgios, et al.
Publicado: (2023) -
How Chaotic is the Balanced State?
por: Jahnke, Sven, et al.
Publicado: (2009)