Cargando…
Early Adaptive Evaluation Scheme for Data-Driven Calibration in Forest Fire Spread Prediction
Forest fires severally affect many ecosystems every year, leading to large environmental damages, casualties and economic losses. Established and emerging technologies are used to help wildfire analysts determine fire behavior and spread aiming at a more accurate prediction results and efficient use...
Autores principales: | Fraga, Edigley, Cortés, Ana, Cencerrado, Andrés, Hernández, Porfidio, Margalef, Tomàs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304762/ http://dx.doi.org/10.1007/978-3-030-50433-5_2 |
Ejemplares similares
-
Applying Probability Theory for the Quality Assessment of a Wildfire Spread Prediction Framework Based on Genetic Algorithms
por: Cencerrado, Andrés, et al.
Publicado: (2013) -
Wind Field Parallelization Based on Python Multiprocessing to Reduce Forest Fire Propagation Prediction Uncertainty
por: Sanjuan, Gemma, et al.
Publicado: (2020) -
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs
por: Vitolo, Claudia, et al.
Publicado: (2018) -
Increasing fire and the decline of fire adapted black spruce in the boreal forest
por: Baltzer, Jennifer L., et al.
Publicado: (2021) -
Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China
por: Liu, Zhihua, et al.
Publicado: (2013)