Cargando…
MCMC for Bayesian Uncertainty Quantification from Time-Series Data
In computational neuroscience, Neural Population Models (NPMs) are mechanistic models that describe brain physiology in a range of different states. Within computational neuroscience there is growing interest in the inverse problem of inferring NPM parameters from recordings such as the EEG (Electro...
Autores principales: | Maybank, Philip, Peltzer, Patrick, Naumann, Uwe, Bojak, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304777/ http://dx.doi.org/10.1007/978-3-030-50436-6_52 |
Ejemplares similares
-
Likelihood, Bayesian, and mcmc methods in quantitative genetics
por: Sorensen, Daniel, et al.
Publicado: (2002) -
Bayesian ABC-MCMC Classification of Liquid Chromatography–Mass Spectrometry Data
por: Banerjee, Upamanyu, et al.
Publicado: (2017) -
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
por: Satija, Rahul, et al.
Publicado: (2009) -
Bayesian Network Reconstruction Using Systems Genetics Data: Comparison of MCMC Methods
por: Tasaki, Shinya, et al.
Publicado: (2015) -
Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models
por: De Smedt, Tom, et al.
Publicado: (2015)