Cargando…
Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications
[Image: see text] Precisely ordered arrays of InAs quantum dots are formed on a nanoisland-structured GaAs (100) surface using in situ laser interference during self-assembled molecular beam epitaxial growth. Nanoislands induced by single-pulse four-beam laser interference act as preferential nuclea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304857/ https://www.ncbi.nlm.nih.gov/pubmed/32582881 http://dx.doi.org/10.1021/acsanm.0c00738 |
_version_ | 1783548342963273728 |
---|---|
author | Wang, Yun Ran Han, Im Sik Jin, Chao-Yuan Hopkinson, Mark |
author_facet | Wang, Yun Ran Han, Im Sik Jin, Chao-Yuan Hopkinson, Mark |
author_sort | Wang, Yun Ran |
collection | PubMed |
description | [Image: see text] Precisely ordered arrays of InAs quantum dots are formed on a nanoisland-structured GaAs (100) surface using in situ laser interference during self-assembled molecular beam epitaxial growth. Nanoislands induced by single-pulse four-beam laser interference act as preferential nucleation sites for InAs quantum dots and result in site occupation dependent on the size of nanoislands, the InAs coverage, and the laser parameters. By optimizing the growth and interference conditions, regular dense ordering of single dots was obtained for the first time using this in situ noninvasive approach. The photoluminescence spectra of the resulting quantum dot arrays with a period of 300 nm show good optical quality and uniformity. This technique paves the way for the rapid large-scale fabrication of arrays of single dots to enable quantum information technology device platforms. |
format | Online Article Text |
id | pubmed-7304857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-73048572020-06-22 Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications Wang, Yun Ran Han, Im Sik Jin, Chao-Yuan Hopkinson, Mark ACS Appl Nano Mater [Image: see text] Precisely ordered arrays of InAs quantum dots are formed on a nanoisland-structured GaAs (100) surface using in situ laser interference during self-assembled molecular beam epitaxial growth. Nanoislands induced by single-pulse four-beam laser interference act as preferential nucleation sites for InAs quantum dots and result in site occupation dependent on the size of nanoislands, the InAs coverage, and the laser parameters. By optimizing the growth and interference conditions, regular dense ordering of single dots was obtained for the first time using this in situ noninvasive approach. The photoluminescence spectra of the resulting quantum dot arrays with a period of 300 nm show good optical quality and uniformity. This technique paves the way for the rapid large-scale fabrication of arrays of single dots to enable quantum information technology device platforms. American Chemical Society 2020-04-20 2020-05-22 /pmc/articles/PMC7304857/ /pubmed/32582881 http://dx.doi.org/10.1021/acsanm.0c00738 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Wang, Yun Ran Han, Im Sik Jin, Chao-Yuan Hopkinson, Mark Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications |
title | Precise Arrays of Epitaxial Quantum Dots Nucleated
by In Situ Laser Interference for Quantum Information Technology Applications |
title_full | Precise Arrays of Epitaxial Quantum Dots Nucleated
by In Situ Laser Interference for Quantum Information Technology Applications |
title_fullStr | Precise Arrays of Epitaxial Quantum Dots Nucleated
by In Situ Laser Interference for Quantum Information Technology Applications |
title_full_unstemmed | Precise Arrays of Epitaxial Quantum Dots Nucleated
by In Situ Laser Interference for Quantum Information Technology Applications |
title_short | Precise Arrays of Epitaxial Quantum Dots Nucleated
by In Situ Laser Interference for Quantum Information Technology Applications |
title_sort | precise arrays of epitaxial quantum dots nucleated
by in situ laser interference for quantum information technology applications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304857/ https://www.ncbi.nlm.nih.gov/pubmed/32582881 http://dx.doi.org/10.1021/acsanm.0c00738 |
work_keys_str_mv | AT wangyunran precisearraysofepitaxialquantumdotsnucleatedbyinsitulaserinterferenceforquantuminformationtechnologyapplications AT hanimsik precisearraysofepitaxialquantumdotsnucleatedbyinsitulaserinterferenceforquantuminformationtechnologyapplications AT jinchaoyuan precisearraysofepitaxialquantumdotsnucleatedbyinsitulaserinterferenceforquantuminformationtechnologyapplications AT hopkinsonmark precisearraysofepitaxialquantumdotsnucleatedbyinsitulaserinterferenceforquantuminformationtechnologyapplications |