Cargando…
Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging
[Image: see text] Machine learning techniques, specifically gradient-enhanced Kriging (GEK), have been implemented for molecular geometry optimization. GEK-based optimization has many advantages compared to conventional—step-restricted second-order truncated expansion—molecular optimization methods....
Autores principales: | Raggi, Gerardo, Galván, Ignacio Fdez., Ritterhoff, Christian L., Vacher, Morgane, Lindh, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304864/ https://www.ncbi.nlm.nih.gov/pubmed/32374164 http://dx.doi.org/10.1021/acs.jctc.0c00257 |
Ejemplares similares
-
Restricted-Variance Constrained, Reaction Path, and
Transition State Molecular Optimizations Using Gradient-Enhanced Kriging
por: Fdez. Galván, Ignacio, et al.
Publicado: (2020) -
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Smooth Things Come
in Threes: A Diabatic Surrogate
Model for Conical Intersection Optimization
por: Fdez. Galván, Ignacio, et al.
Publicado: (2023) -
Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction
por: Huang, Ling, et al.
Publicado: (2017) -
Regularized CASPT2:
an Intruder-State-Free Approach
por: Battaglia, Stefano, et al.
Publicado: (2022)