Cargando…
Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids
[Image: see text] Current machine learning (ML) models aimed at learning force fields are plagued by their high computational cost at every integration time step. We describe a number of practical and computationally efficient strategies to parametrize traditional force fields for molecular liquids...
Autores principales: | Scherer, Christoph, Scheid, René, Andrienko, Denis, Bereau, Tristan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304872/ https://www.ncbi.nlm.nih.gov/pubmed/32282206 http://dx.doi.org/10.1021/acs.jctc.9b01256 |
Ejemplares similares
-
Benchmarking coarse-grained models of organic semiconductors via deep backmapping
por: Stieffenhofer, Marc, et al.
Publicado: (2022) -
Computing inelastic neutron scattering spectra from molecular dynamics trajectories
por: Harrelson, Thomas F., et al.
Publicado: (2021) -
Alumina Concentration Detection Based on the Kernel Extreme Learning Machine
por: Zhang, Sen, et al.
Publicado: (2017) -
Quantum machine learning beyond kernel methods
por: Jerbi, Sofiene, et al.
Publicado: (2023) -
Experimental kernel-based quantum machine learning in finite feature space
por: Bartkiewicz, Karol, et al.
Publicado: (2020)