Cargando…
The Potential of Overlayers on Tin-based Perovskites for Water Splitting
[Image: see text] Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304906/ https://www.ncbi.nlm.nih.gov/pubmed/32354214 http://dx.doi.org/10.1021/acs.jpclett.0c00964 |
Sumario: | [Image: see text] Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials. We show that the best candidate, SrSnO(3), possesses hydrogen and oxygen overpotentials of 0.75 and 0.72 eV, respectively, which are reduced to 0.35 and 0.54 eV with the inclusion of a ZrO(2) overlayer. Furthermore, this overlayer promotes charge extraction, stabilizes the reaction pathways, and improves the band gap such that it straddles the overpotentials between pH 0 and pH 12. This result indicates that SrSnO(3) with a ZrO(2) overlayer has significant potential as a highly efficient bifunctional water splitter for producing hydrogen and oxygen gas on the same surface. |
---|