Cargando…

The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency

Subunit vaccines generally proceed through a 4-step in vivo cascade—the DUMP cascade—to generate potent cell-mediated immune responses: (1) drainage to lymph nodes; (2) uptake by dendritic cells (DCs); (3) maturation of DCs; and (4) Presentation of peptide-MHC I complexes to CD8(+) T cells. How the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Xiaoyu, Zhong, Xiaofang, Du, Guangsheng, Hou, Yingying, Zhang, Yunting, Zhang, Zhirong, Gong, Tao, Zhang, Ling, Sun, Xun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304990/
https://www.ncbi.nlm.nih.gov/pubmed/32596445
http://dx.doi.org/10.1126/sciadv.aaz4462
Descripción
Sumario:Subunit vaccines generally proceed through a 4-step in vivo cascade—the DUMP cascade—to generate potent cell-mediated immune responses: (1) drainage to lymph nodes; (2) uptake by dendritic cells (DCs); (3) maturation of DCs; and (4) Presentation of peptide-MHC I complexes to CD8(+) T cells. How the physical properties of vaccine carriers such as mesoporous silica nanoparticles (MSNs) influence this cascade is unclear. We fabricated 80-nm MSNs with different pore sizes (7.8 nm, 10.3 nm, and 12.9 nm) and loaded them with ovalbumin antigen. Results demonstrated these MSNs with different pore sizes were equally effective in the first three steps of the DUMP cascade, but those with larger pores showed higher cross-presentation efficiency (step 4). Consistently, large-pore MSNs loaded with B16F10 tumor antigens yielded the strongest antitumor effects. These results demonstrate the promise of our lymph node-targeting large-pore MSNs as vaccine-delivery vehicles for immune activation and cancer vaccination.