Cargando…
Early Metabolic Features of Genetic Liability to Type 2 Diabetes: Cohort Study With Repeated Metabolomics Across Early Life
OBJECTIVE: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early metabolic features characterizing liability to adult disease by examining genetic liability to adult type 2 diabetes in relation to metabolomic traits across early life. RESEARCH DESIGN AND METHODS: Up to 4...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305012/ https://www.ncbi.nlm.nih.gov/pubmed/32345654 http://dx.doi.org/10.2337/dc19-2348 |
Sumario: | OBJECTIVE: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early metabolic features characterizing liability to adult disease by examining genetic liability to adult type 2 diabetes in relation to metabolomic traits across early life. RESEARCH DESIGN AND METHODS: Up to 4,761 offspring from the Avon Longitudinal Study of Parents and Children were studied. Linear models were used to examine effects of a genetic risk score (162 variants) for adult type 2 diabetes on 229 metabolomic traits (lipoprotein subclass–specific cholesterol and triglycerides, amino acids, glycoprotein acetyls, and others) measured at age 8 years, 16 years, 18 years, and 25 years. Two-sample Mendelian randomization (MR) was also conducted using genome-wide association study data on metabolomic traits in an independent sample of 24,925 adults. RESULTS: At age 8 years, associations were most evident for type 2 diabetes liability (per SD higher) with lower lipids in HDL subtypes (e.g., −0.03 SD [95% CI −0.06, −0.003] for total lipids in very large HDL). At 16 years, associations were stronger with preglycemic traits, including citrate and with glycoprotein acetyls (0.05 SD; 95% CI 0.01, 0.08), and at 18 years, associations were stronger with branched-chain amino acids. At 25 years, associations had strengthened with VLDL lipids and remained consistent with previously altered traits, including HDL lipids. Two-sample MR estimates among adults indicated persistent patterns of effect of disease liability. CONCLUSIONS: Our results support perturbed HDL lipid metabolism as one of the earliest features of type 2 diabetes liability, alongside higher branched-chain amino acid and inflammatory levels. Several features are apparent in childhood as early as age 8 years, decades before the clinical onset of disease. |
---|