Cargando…

Early Metabolic Features of Genetic Liability to Type 2 Diabetes: Cohort Study With Repeated Metabolomics Across Early Life

OBJECTIVE: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early metabolic features characterizing liability to adult disease by examining genetic liability to adult type 2 diabetes in relation to metabolomic traits across early life. RESEARCH DESIGN AND METHODS: Up to 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Bell, Joshua A., Bull, Caroline J., Gunter, Marc J., Carslake, David, Mahajan, Anubha, Davey Smith, George, Timpson, Nicholas J., Vincent, Emma E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305012/
https://www.ncbi.nlm.nih.gov/pubmed/32345654
http://dx.doi.org/10.2337/dc19-2348
Descripción
Sumario:OBJECTIVE: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early metabolic features characterizing liability to adult disease by examining genetic liability to adult type 2 diabetes in relation to metabolomic traits across early life. RESEARCH DESIGN AND METHODS: Up to 4,761 offspring from the Avon Longitudinal Study of Parents and Children were studied. Linear models were used to examine effects of a genetic risk score (162 variants) for adult type 2 diabetes on 229 metabolomic traits (lipoprotein subclass–specific cholesterol and triglycerides, amino acids, glycoprotein acetyls, and others) measured at age 8 years, 16 years, 18 years, and 25 years. Two-sample Mendelian randomization (MR) was also conducted using genome-wide association study data on metabolomic traits in an independent sample of 24,925 adults. RESULTS: At age 8 years, associations were most evident for type 2 diabetes liability (per SD higher) with lower lipids in HDL subtypes (e.g., −0.03 SD [95% CI −0.06, −0.003] for total lipids in very large HDL). At 16 years, associations were stronger with preglycemic traits, including citrate and with glycoprotein acetyls (0.05 SD; 95% CI 0.01, 0.08), and at 18 years, associations were stronger with branched-chain amino acids. At 25 years, associations had strengthened with VLDL lipids and remained consistent with previously altered traits, including HDL lipids. Two-sample MR estimates among adults indicated persistent patterns of effect of disease liability. CONCLUSIONS: Our results support perturbed HDL lipid metabolism as one of the earliest features of type 2 diabetes liability, alongside higher branched-chain amino acid and inflammatory levels. Several features are apparent in childhood as early as age 8 years, decades before the clinical onset of disease.