Cargando…
Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data
Spindle event detection is a key component in analyzing human sleep. However, detection of these oscillatory patterns by experts is time consuming and costly. Automated detection algorithms are cost efficient and reproducible but require robust datasets to be trained and validated. Using the MODA (M...
Autores principales: | Lacourse, Karine, Yetton, Ben, Mednick, Sara, Warby, Simon C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305234/ https://www.ncbi.nlm.nih.gov/pubmed/32561751 http://dx.doi.org/10.1038/s41597-020-0533-4 |
Ejemplares similares
-
Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods
por: Warby, Simon C., et al.
Publicado: (2014) -
On reliability of annotations in contextual emotion imagery
por: Martínez-Miwa, Carlos A., et al.
Publicado: (2023) -
Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks
por: Yetton, Benjamin D., et al.
Publicado: (2018) -
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images
por: Mitry, Danny, et al.
Publicado: (2016) -
Crowdsourcing airway annotations in chest computed tomography images
por: Cheplygina, Veronika, et al.
Publicado: (2021)