Cargando…
Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms
Forest aboveground biomass (AGB) plays an important role in the study of the carbon cycle and climate change in the global terrestrial ecosystem. AGB estimation based on remote sensing is an effective method for regional scale. In this study, Landsat 8 Operational Land Imager and Sentinel-1A data an...
Autores principales: | Li, Yingchang, Li, Mingyang, Li, Chao, Liu, Zhenzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305324/ https://www.ncbi.nlm.nih.gov/pubmed/32561836 http://dx.doi.org/10.1038/s41598-020-67024-3 |
Ejemplares similares
-
Estimation of aboveground biomass of vegetation based on landsat 8 OLI images
por: Zhang, Yanbin, et al.
Publicado: (2022) -
The Effect of Synergistic Approaches of Features and Ensemble Learning Algorith on Aboveground Biomass Estimation of Natural Secondary Forests Based on ALS and Landsat 8
por: Du, Chunyu, et al.
Publicado: (2021) -
Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China
por: Jiang, Fugen, et al.
Publicado: (2022) -
MODIS Based Estimation of Forest Aboveground Biomass in China
por: Yin, Guodong, et al.
Publicado: (2015) -
Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico
por: Ortiz-Reyes, Alma D., et al.
Publicado: (2021)