Cargando…
Nanomaterials and Their Negative Effects on Human Health
Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305518/ http://dx.doi.org/10.1007/978-981-15-4802-4_13 |
Sumario: | Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs to be summarized. Nanoparticles with size below 100 nm could pass into the lung and then to blood through inhalation, ingestion, and skin contact. As nanotechnology innovation is expected to achieve $ 2231 million by 2025, humans will be exposed ever increasingly in day-to-day life and in industries. In this review, the latest synthetic methodology of silica, dendrimers, and CNTs, their biological applications (in vitro and in vivo) related to toxicity were discussed. In terms of structured silica, the toxic and non-toxic effect induced by specific templates (cetylpyridinium bromide, cetyltrimethylammonium bromide, dipalmitoylphosphatidylcholine, C16L-tryptophan, C16-L-histidine, and C16-L-poline) that are used to generate mesoporous silica, silica nanoparticle sizes (25, 50, 60, 115, and 500 nm), and silane functionalization (NH(2) and COOH) were discussed. The recent applications of different generations (G3, G4, G5, and G6) of amphiphilic Janus dendrimers were discussed along with toxicity effect of different charged dendrimers (cationic and anionic) and effect of PEGylation. Recent synthesis, advantages, and disadvantages of carbon nanotubes (CNTs) were presented for structures like single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The influence of diameter of SWCNTs (linear and short), thickness (thin and thick), effect of oxidation, metal oxide species (TiO(2), Fe, and Au), and biocompatible polymers (polyethylene glycol, bisphosphonate, and alendronate) were shown in relation to molecular pathways in animal cells. |
---|