Cargando…
Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique methodical features to model dependencies in complex networks, such as forward and backward propagation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research...
Autores principales: | Hosseini, Seyedmohsen, Ivanov, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305519/ https://www.ncbi.nlm.nih.gov/pubmed/32834558 http://dx.doi.org/10.1016/j.eswa.2020.113649 |
Ejemplares similares
-
Blackout and supply chains: Cross-structural ripple effect, performance, resilience and viability impact analysis
por: Ivanov, Dmitry
Publicado: (2022) -
Simulation-based assessment of supply chain resilience with consideration of recovery strategies in the COVID-19 pandemic context
por: Moosavi, Javid, et al.
Publicado: (2021) -
Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability
por: Li, Yuhong, et al.
Publicado: (2021) -
A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic
por: Brusset, Xavier, et al.
Publicado: (2023) -
Structural dynamics and resilience in supply chain risk management
por: Ivanov, Dmitry
Publicado: (2017)