Cargando…
Enhanced Integrated Gradients: improving interpretability of deep learning models using splicing codes as a case study
Despite the success and fast adaptation of deep learning models in biomedical domains, their lack of interpretability remains an issue. Here, we introduce Enhanced Integrated Gradients (EIG), a method to identify significant features associated with a specific prediction task. Using RNA splicing pre...
Autores principales: | Jha, Anupama, K. Aicher, Joseph, R. Gazzara, Matthew, Singh, Deependra, Barash, Yoseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305616/ https://www.ncbi.nlm.nih.gov/pubmed/32560708 http://dx.doi.org/10.1186/s13059-020-02055-7 |
Ejemplares similares
-
Integrative deep models for alternative splicing
por: Jha, Anupama, et al.
Publicado: (2017) -
RNA splicing analysis using heterogeneous and large RNA-seq datasets
por: Vaquero-Garcia, Jorge, et al.
Publicado: (2023) -
Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes
por: Gazzara, Matthew R., et al.
Publicado: (2017) -
Identifying common transcriptome signatures of cancer by interpreting deep learning models
por: Jha, Anupama, et al.
Publicado: (2022) -
MAJIQ-SPEL: web-tool to interrogate classical and complex splicing variations from RNA-Seq data
por: Green, Christopher J, et al.
Publicado: (2018)