Cargando…
A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques
High-dimensional data, such as those generated by single-cell RNA sequencing (scRNA-seq), present challenges in interpretation and visualization. Numerical and computational methods for dimensionality reduction allow for low-dimensional representation of genome-scale expression data for downstream c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305633/ https://www.ncbi.nlm.nih.gov/pubmed/32375029 http://dx.doi.org/10.1016/j.celrep.2020.107576 |
_version_ | 1783548504468094976 |
---|---|
author | Heiser, Cody N. Lau, Ken S. |
author_facet | Heiser, Cody N. Lau, Ken S. |
author_sort | Heiser, Cody N. |
collection | PubMed |
description | High-dimensional data, such as those generated by single-cell RNA sequencing (scRNA-seq), present challenges in interpretation and visualization. Numerical and computational methods for dimensionality reduction allow for low-dimensional representation of genome-scale expression data for downstream clustering, trajectory reconstruction, and biological interpretation. However, a comprehensive and quantitative evaluation of the performance of these techniques has not been established. We present an unbiased framework that defines metrics of global and local structure preservation in dimensionality reduction transformations. Using discrete and continuous real-world and synthetic scRNA-seq datasets, we show how input cell distribution and method parameters are largely determinant of global, local, and organizational data structure preservation by 11 common dimensionality reduction methods. |
format | Online Article Text |
id | pubmed-7305633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73056332020-06-20 A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques Heiser, Cody N. Lau, Ken S. Cell Rep Article High-dimensional data, such as those generated by single-cell RNA sequencing (scRNA-seq), present challenges in interpretation and visualization. Numerical and computational methods for dimensionality reduction allow for low-dimensional representation of genome-scale expression data for downstream clustering, trajectory reconstruction, and biological interpretation. However, a comprehensive and quantitative evaluation of the performance of these techniques has not been established. We present an unbiased framework that defines metrics of global and local structure preservation in dimensionality reduction transformations. Using discrete and continuous real-world and synthetic scRNA-seq datasets, we show how input cell distribution and method parameters are largely determinant of global, local, and organizational data structure preservation by 11 common dimensionality reduction methods. 2020-05-05 /pmc/articles/PMC7305633/ /pubmed/32375029 http://dx.doi.org/10.1016/j.celrep.2020.107576 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Heiser, Cody N. Lau, Ken S. A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title | A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title_full | A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title_fullStr | A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title_full_unstemmed | A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title_short | A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques |
title_sort | quantitative framework for evaluating single-cell data structure preservation by dimensionality reduction techniques |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305633/ https://www.ncbi.nlm.nih.gov/pubmed/32375029 http://dx.doi.org/10.1016/j.celrep.2020.107576 |
work_keys_str_mv | AT heisercodyn aquantitativeframeworkforevaluatingsinglecelldatastructurepreservationbydimensionalityreductiontechniques AT laukens aquantitativeframeworkforevaluatingsinglecelldatastructurepreservationbydimensionalityreductiontechniques AT heisercodyn quantitativeframeworkforevaluatingsinglecelldatastructurepreservationbydimensionalityreductiontechniques AT laukens quantitativeframeworkforevaluatingsinglecelldatastructurepreservationbydimensionalityreductiontechniques |