Cargando…
Modeling regional disease spread over time using a dynamic spatio-temporal model – With an application to porcine epidemic diarrhea virus data in Iowa, US
Regional surveillance is important for detecting the incursion of new pathogens and informing disease monitoring and control programs. Modeling disease distribution over time can provide insight into the development of more efficient regional surveillance approaches. Herein we propose a Bayesian spa...
Autores principales: | Ji, J., Wang, C., Rotolo, M., Zimmerman, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305876/ https://www.ncbi.nlm.nih.gov/pubmed/32623290 http://dx.doi.org/10.1016/j.prevetmed.2020.105053 |
Ejemplares similares
-
Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading
por: Winkelmann, Stefanie, et al.
Publicado: (2021) -
Time-calibrated phylogenomics of the porcine epidemic diarrhea virus: genome-wide insights into the spatio-temporal dynamics
por: Jang, Jisung, et al.
Publicado: (2018) -
Porcine Epidemic Diarrhea
por: Peng, Ju-Yi, et al.
Publicado: (2016) -
Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs
por: Bjustrom-Kraft, Jordan, et al.
Publicado: (2016) -
509. Spatio-Temporal Clustering of CDI Cases at the University of Iowa Hospitals and Clinics
por: Pai, Shreyas, et al.
Publicado: (2018)