Cargando…
Measurement accuracy of lung nodule volumetry in a phantom study: Effect of axial-volume scan and iterative reconstruction algorithm
An axial-volume scan with adaptive statistical iterative reconstruction-V (ASIR-V) is newly developed. Our goal was to identify the influence of axial-volume scan and ASIR-V on accuracy of automated nodule volumetry. An “adult" chest phantom containing various nodules was scanned using both hel...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306330/ https://www.ncbi.nlm.nih.gov/pubmed/32502015 http://dx.doi.org/10.1097/MD.0000000000020543 |
Sumario: | An axial-volume scan with adaptive statistical iterative reconstruction-V (ASIR-V) is newly developed. Our goal was to identify the influence of axial-volume scan and ASIR-V on accuracy of automated nodule volumetry. An “adult" chest phantom containing various nodules was scanned using both helical and axial-volume modes at different dose settings using 256-slice CT. All CT scans were reconstructed using 30% and 50% blending of ASIR-V and filtered back projection. Automated nodule volumetry was performed using commercial software. The image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were measured. The axial-volume scan reduced radiation dose by 19.7% compared with helical scan at all radiation dose settings without affecting the accuracy of nodule volumetric measurement (P = .375). Image noise, CNR, and SNR were not significantly different between two scan modes (all, P > .05). The use of axial-volume scan with ASIR-V achieved effective radiation dose reduction while preserving the accuracy of nodule volumetry. |
---|