Cargando…
Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis
Plant tryptophan decarboxylase (TDC) is a type II Pyridoxal-5′-phosphate-dependent decarboxylase (PLP_DC) that could be used as a target to genetically improve crops. However, lack of accurate structural information on plant TDC hampers the understanding of its decarboxylation mechanisms. In the pre...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306523/ https://www.ncbi.nlm.nih.gov/pubmed/32595985 http://dx.doi.org/10.1016/j.jare.2020.06.004 |
_version_ | 1783548670809997312 |
---|---|
author | Zhou, Yuanze Liao, Lijing Liu, Xikai Liu, Biao Chen, Xinxin Guo, Yan Huang, Chuanlong Zhao, Yucheng Zeng, Zhixiong |
author_facet | Zhou, Yuanze Liao, Lijing Liu, Xikai Liu, Biao Chen, Xinxin Guo, Yan Huang, Chuanlong Zhao, Yucheng Zeng, Zhixiong |
author_sort | Zhou, Yuanze |
collection | PubMed |
description | Plant tryptophan decarboxylase (TDC) is a type II Pyridoxal-5′-phosphate-dependent decarboxylase (PLP_DC) that could be used as a target to genetically improve crops. However, lack of accurate structural information on plant TDC hampers the understanding of its decarboxylation mechanisms. In the present study, the crystal structures of Oryza sativa TDC (OsTDC) in its complexes with pyridoxal-5′-phosphate, tryptamine and serotonin were determined. The structures provide detailed interaction information between TDC and its substrates. The Y359 residue from the loop gate is a proton donor and forms a Lewis acid-base pair with serotonin/tryptamine, which is associated with product release. The H214 residue is responsible for PLP binding and proton transfer, and its proper interaction with Y359 is essential for OsTDC enzyme activity. The extra hydrogen bonds formed between the 5-hydroxyl group of serotonin and the backbone carboxyl groups of F104 and P105 explain the discrepancy between the catalytic activity of TDC in tryptophan and in 5-hydroxytryptophan. In addition, an evolutionary analysis revealed that type II PLP_DC originated from glutamic acid decarboxylase, potentially as an adaptive evolution of mechanism in organisms in extreme environments. This study is, to our knowledge, the first to present a detailed analysis of the crystal structure of OsTDC in these complexes. The information regarding the catalytic mechanism described here could facilitate the development of protocols to regulate melatonin levels and thereby contribute to crop improvement efforts to improve food security worldwide. |
format | Online Article Text |
id | pubmed-7306523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-73065232020-06-25 Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis Zhou, Yuanze Liao, Lijing Liu, Xikai Liu, Biao Chen, Xinxin Guo, Yan Huang, Chuanlong Zhao, Yucheng Zeng, Zhixiong J Adv Res Article Plant tryptophan decarboxylase (TDC) is a type II Pyridoxal-5′-phosphate-dependent decarboxylase (PLP_DC) that could be used as a target to genetically improve crops. However, lack of accurate structural information on plant TDC hampers the understanding of its decarboxylation mechanisms. In the present study, the crystal structures of Oryza sativa TDC (OsTDC) in its complexes with pyridoxal-5′-phosphate, tryptamine and serotonin were determined. The structures provide detailed interaction information between TDC and its substrates. The Y359 residue from the loop gate is a proton donor and forms a Lewis acid-base pair with serotonin/tryptamine, which is associated with product release. The H214 residue is responsible for PLP binding and proton transfer, and its proper interaction with Y359 is essential for OsTDC enzyme activity. The extra hydrogen bonds formed between the 5-hydroxyl group of serotonin and the backbone carboxyl groups of F104 and P105 explain the discrepancy between the catalytic activity of TDC in tryptophan and in 5-hydroxytryptophan. In addition, an evolutionary analysis revealed that type II PLP_DC originated from glutamic acid decarboxylase, potentially as an adaptive evolution of mechanism in organisms in extreme environments. This study is, to our knowledge, the first to present a detailed analysis of the crystal structure of OsTDC in these complexes. The information regarding the catalytic mechanism described here could facilitate the development of protocols to regulate melatonin levels and thereby contribute to crop improvement efforts to improve food security worldwide. Elsevier 2020-06-12 /pmc/articles/PMC7306523/ /pubmed/32595985 http://dx.doi.org/10.1016/j.jare.2020.06.004 Text en © 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zhou, Yuanze Liao, Lijing Liu, Xikai Liu, Biao Chen, Xinxin Guo, Yan Huang, Chuanlong Zhao, Yucheng Zeng, Zhixiong Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title | Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title_full | Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title_fullStr | Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title_full_unstemmed | Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title_short | Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis |
title_sort | crystal structure of oryza sativa tdc reveals the substrate specificity for tdc-mediated melatonin biosynthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306523/ https://www.ncbi.nlm.nih.gov/pubmed/32595985 http://dx.doi.org/10.1016/j.jare.2020.06.004 |
work_keys_str_mv | AT zhouyuanze crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT liaolijing crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT liuxikai crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT liubiao crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT chenxinxin crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT guoyan crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT huangchuanlong crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT zhaoyucheng crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis AT zengzhixiong crystalstructureoforyzasativatdcrevealsthesubstratespecificityfortdcmediatedmelatoninbiosynthesis |