Cargando…
Identifying commonality and specificity across psychosis sub-groups via classification based on features from dynamic connectivity analysis
It is difficult to distinguish schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar disorder with psychosis (BPP) as their clinical diagnoses rely on symptoms that overlap. In this paper, we investigate if there is biological evidence to support the symptom-based clinical categories by lo...
Autores principales: | Du, Yuhui, Hao, Hui, Wang, Shuhua, Pearlson, Godfrey D, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306624/ https://www.ncbi.nlm.nih.gov/pubmed/32563920 http://dx.doi.org/10.1016/j.nicl.2020.102284 |
Ejemplares similares
-
Evaluation of boundaries between mood and psychosis disorder using dynamic functional network connectivity (dFNC) via deep learning classification
por: Rokham, Hooman, et al.
Publicado: (2023) -
Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and classification
por: Rabany, Liron, et al.
Publicado: (2019) -
Classification of schizophrenia patients based on resting-state functional network connectivity
por: Arbabshirani, Mohammad R., et al.
Publicado: (2013) -
Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: A group ICA study
por: Du, Yuhui, et al.
Publicado: (2017) -
An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders
por: Pearlson, Godfrey D., et al.
Publicado: (2015)