Cargando…

The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”

The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first “snowball Earth” global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Warke, Matthew R., Di Rocco, Tommaso, Zerkle, Aubrey L., Lepland, Aivo, Prave, Anthony R., Martin, Adam P., Ueno, Yuichiro, Condon, Daniel J., Claire, Mark W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306805/
https://www.ncbi.nlm.nih.gov/pubmed/32482849
http://dx.doi.org/10.1073/pnas.2003090117
_version_ 1783548723460046848
author Warke, Matthew R.
Di Rocco, Tommaso
Zerkle, Aubrey L.
Lepland, Aivo
Prave, Anthony R.
Martin, Adam P.
Ueno, Yuichiro
Condon, Daniel J.
Claire, Mark W.
author_facet Warke, Matthew R.
Di Rocco, Tommaso
Zerkle, Aubrey L.
Lepland, Aivo
Prave, Anthony R.
Martin, Adam P.
Ueno, Yuichiro
Condon, Daniel J.
Claire, Mark W.
author_sort Warke, Matthew R.
collection PubMed
description The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first “snowball Earth” global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate change. Here we present temporally resolved quadruple sulfur isotope measurements (δ(34)S, ∆(33)S, and ∆(36)S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations on the Fennoscandian Shield, northwest Russia, that address this issue. Sulfides in the former preserve evidence of mass-independent fractionation of sulfur isotopes (S-MIF) falling within uncertainty of the Archean reference array with a ∆(36)S/∆(33)S slope of −1.8 and have small negative ∆(33)S values, whereas in the latter mass-dependent fractionation of sulfur isotopes (S-MDF) is evident, with a ∆(36)S/∆(33)S slope of −8.8. These trends, combined with geochronological constraints, place the S-MIF/S-MDF transition, the key indicator of the GOE, between 2,501.5 ± 1.7 Ma and 2,434 ± 6.6 Ma. These are the tightest temporal and stratigraphic constraints yet for the S-MIF/S-MDF transition and show that its timing in Fennoscandia is consistent with the S-MIF/S-MDF transition in North America and South Africa. Further, the glacigenic part of the Polisarka Formation occurs 60 m above the sedimentary succession containing S-MDF signals. Hence, our findings confirm unambiguously that the S-MIF/S-MDF transition preceded the Paleoproterozoic snowball Earth. Resolution of this temporal relationship constrains cause-and-effect drivers of Earth’s oxygenation, specifically ruling out conceptual models in which global glaciation precedes or causes the evolution of oxygenic photosynthesis.
format Online
Article
Text
id pubmed-7306805
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-73068052020-06-25 The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth” Warke, Matthew R. Di Rocco, Tommaso Zerkle, Aubrey L. Lepland, Aivo Prave, Anthony R. Martin, Adam P. Ueno, Yuichiro Condon, Daniel J. Claire, Mark W. Proc Natl Acad Sci U S A Physical Sciences The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first “snowball Earth” global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate change. Here we present temporally resolved quadruple sulfur isotope measurements (δ(34)S, ∆(33)S, and ∆(36)S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations on the Fennoscandian Shield, northwest Russia, that address this issue. Sulfides in the former preserve evidence of mass-independent fractionation of sulfur isotopes (S-MIF) falling within uncertainty of the Archean reference array with a ∆(36)S/∆(33)S slope of −1.8 and have small negative ∆(33)S values, whereas in the latter mass-dependent fractionation of sulfur isotopes (S-MDF) is evident, with a ∆(36)S/∆(33)S slope of −8.8. These trends, combined with geochronological constraints, place the S-MIF/S-MDF transition, the key indicator of the GOE, between 2,501.5 ± 1.7 Ma and 2,434 ± 6.6 Ma. These are the tightest temporal and stratigraphic constraints yet for the S-MIF/S-MDF transition and show that its timing in Fennoscandia is consistent with the S-MIF/S-MDF transition in North America and South Africa. Further, the glacigenic part of the Polisarka Formation occurs 60 m above the sedimentary succession containing S-MDF signals. Hence, our findings confirm unambiguously that the S-MIF/S-MDF transition preceded the Paleoproterozoic snowball Earth. Resolution of this temporal relationship constrains cause-and-effect drivers of Earth’s oxygenation, specifically ruling out conceptual models in which global glaciation precedes or causes the evolution of oxygenic photosynthesis. National Academy of Sciences 2020-06-16 2020-06-01 /pmc/articles/PMC7306805/ /pubmed/32482849 http://dx.doi.org/10.1073/pnas.2003090117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Warke, Matthew R.
Di Rocco, Tommaso
Zerkle, Aubrey L.
Lepland, Aivo
Prave, Anthony R.
Martin, Adam P.
Ueno, Yuichiro
Condon, Daniel J.
Claire, Mark W.
The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title_full The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title_fullStr The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title_full_unstemmed The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title_short The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
title_sort great oxidation event preceded a paleoproterozoic “snowball earth”
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306805/
https://www.ncbi.nlm.nih.gov/pubmed/32482849
http://dx.doi.org/10.1073/pnas.2003090117
work_keys_str_mv AT warkematthewr thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT diroccotommaso thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT zerkleaubreyl thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT leplandaivo thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT praveanthonyr thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT martinadamp thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT uenoyuichiro thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT condondanielj thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT clairemarkw thegreatoxidationeventprecededapaleoproterozoicsnowballearth
AT warkematthewr greatoxidationeventprecededapaleoproterozoicsnowballearth
AT diroccotommaso greatoxidationeventprecededapaleoproterozoicsnowballearth
AT zerkleaubreyl greatoxidationeventprecededapaleoproterozoicsnowballearth
AT leplandaivo greatoxidationeventprecededapaleoproterozoicsnowballearth
AT praveanthonyr greatoxidationeventprecededapaleoproterozoicsnowballearth
AT martinadamp greatoxidationeventprecededapaleoproterozoicsnowballearth
AT uenoyuichiro greatoxidationeventprecededapaleoproterozoicsnowballearth
AT condondanielj greatoxidationeventprecededapaleoproterozoicsnowballearth
AT clairemarkw greatoxidationeventprecededapaleoproterozoicsnowballearth