Cargando…
Preventive use of respiratory support after scheduled extubation in critically ill medical patients—a network meta-analysis of randomized controlled trials
BACKGROUND: Respiratory support has been increasingly used after extubation for the prevention of re-intubation and improvement of prognosis in critically ill medical patients. However, the optimal respiratory support method is still under debate. This network meta-analysis (NMA) aims to evaluate th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306939/ https://www.ncbi.nlm.nih.gov/pubmed/32571369 http://dx.doi.org/10.1186/s13054-020-03090-3 |
Sumario: | BACKGROUND: Respiratory support has been increasingly used after extubation for the prevention of re-intubation and improvement of prognosis in critically ill medical patients. However, the optimal respiratory support method is still under debate. This network meta-analysis (NMA) aims to evaluate the comparative effectiveness of various respiratory support methods used for preventive purposes after scheduled extubation in critically ill medical patients. METHODS: A systematic database search was performed from inception to December 19, 2019, for randomized controlled trials (RCTs) that compared a preventive use of different respiratory support methods, including conventional oxygen therapy (COT), noninvasive ventilation (NIV), high-flow oxygen therapy (HFOT), and combinational use of HFOT and NIV (HFOT+NIV), after planned extubation in adult critically ill medical patients. Study selection, data extraction, and quality assessments were performed in duplicate. The primary outcomes included re-intubation rate and short-term mortality. RESULTS: Seventeen RCTs comprising 3341 participants with 4 comparisons were included. Compared with COT, NIV significantly reduced the re-intubation rate [risk ratio (RR) 0.55, 95% confidence interval (CI) 0.39 to 0.77; moderate quality of evidence] and short-term mortality (RR 0.66, 95% CI 0.48 to 0.91; moderate quality of evidence). Compared to COT, HFOT had a beneficial effect on the re-intubation rate (RR 0.55, 95% CI 0.35 to 0.86; moderate quality of evidence) but no effect on short-term mortality (RR 0.79, 95% CI 0.56 to 1.12; low quality of evidence). No significant difference in the re-intubation rate or short-term mortality was found among NIV, HFOT, and HFOT+NIV. The treatment rankings based on the surface under the cumulative ranking curve (SUCRA) from best to worst for re-intubation rate were HFOT+NIV (95.1%), NIV (53.4%), HFOT (51.2%), and COT (0.3%), and the rankings for short-term mortality were NIV (91.0%), HFOT (54.3%), HFOT+NIV (43.7%), and COT (11.1%). Sensitivity analyses of trials with a high risk of extubation failure for the primary outcomes indicated that the SUCRA rankings were comparable to those of the primary analysis. CONCLUSIONS: After scheduled extubation, the preventive use of NIV is probably the most effective respiratory support method for comprehensively preventing re-intubation and short-term death in critically ill medical patients, especially those with a high risk of extubation failure. |
---|