Cargando…

Characterization of a sweet basil acyltransferase involved in eugenol biosynthesis

Sweet basil (Ocimum basilicum) plants produce its characteristic phenylpropene-rich essential oil in specialized structures known as peltate glandular trichomes (PGTs). Eugenol and chavicol are the major phenylpropenes produced by sweet basil varieties whose synthetic pathways are not fully elucidat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhar, Niha, Sarangapani, Sreelatha, Reddy, Vaishnavi Amarr, Kumar, Nadimuthu, Panicker, Deepa, Jin, Jingjing, Chua, Nam-Hai, Sarojam, Rajani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307857/
https://www.ncbi.nlm.nih.gov/pubmed/32198522
http://dx.doi.org/10.1093/jxb/eraa142
Descripción
Sumario:Sweet basil (Ocimum basilicum) plants produce its characteristic phenylpropene-rich essential oil in specialized structures known as peltate glandular trichomes (PGTs). Eugenol and chavicol are the major phenylpropenes produced by sweet basil varieties whose synthetic pathways are not fully elucidated. Eugenol is derived from coniferyl acetate by a reaction catalysed by eugenol synthase. An acyltransferase is proposed to convert coniferyl alcohol to coniferyl acetate which is the first committed step towards eugenol synthesis. Here, we perform a comparative next-generation transcriptome sequencing of different tissues of sweet basil, namely PGT, leaf, leaf stripped of PGTs (leaf–PGT), and roots, to identify differentially expressed transcripts specific to PGT. From these data, we identified a PGT-enriched BAHD acyltransferase gene ObCAAT1 and functionally characterized it. In vitro coupled reaction of ObCAAT1 with eugenol synthase in the presence of coniferyl alcohol resulted in eugenol production. Analysis of ObCAAT1-RNAi transgenic lines showed decreased levels of eugenol and accumulation of coniferyl alcohol and its derivatives. Coniferyl alcohol acts as a common substrate for phenylpropene and lignin biosynthesis. No differences were found in total lignin content of PGTs and leaves of transgenic lines, indicating that phenylpropene biosynthesis is not coupled to lignification in sweet basil.