Cargando…

Room-Temperature Defect Qubits in Ultrasmall Nanocrystals

[Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Beke, Dávid, Valenta, Jan, Károlyházy, Gyula, Lenk, Sándor, Czigány, Zsolt, Márkus, Bence Gábor, Kamarás, Katalin, Simon, Ferenc, Gali, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307950/
https://www.ncbi.nlm.nih.gov/pubmed/32040330
http://dx.doi.org/10.1021/acs.jpclett.0c00052
_version_ 1783548905708847104
author Beke, Dávid
Valenta, Jan
Károlyházy, Gyula
Lenk, Sándor
Czigány, Zsolt
Márkus, Bence Gábor
Kamarás, Katalin
Simon, Ferenc
Gali, Adam
author_facet Beke, Dávid
Valenta, Jan
Károlyházy, Gyula
Lenk, Sándor
Czigány, Zsolt
Márkus, Bence Gábor
Kamarás, Katalin
Simon, Ferenc
Gali, Adam
author_sort Beke, Dávid
collection PubMed
description [Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000–1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization.
format Online
Article
Text
id pubmed-7307950
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73079502020-06-23 Room-Temperature Defect Qubits in Ultrasmall Nanocrystals Beke, Dávid Valenta, Jan Károlyházy, Gyula Lenk, Sándor Czigány, Zsolt Márkus, Bence Gábor Kamarás, Katalin Simon, Ferenc Gali, Adam J Phys Chem Lett [Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000–1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization. American Chemical Society 2020-02-10 2020-03-05 /pmc/articles/PMC7307950/ /pubmed/32040330 http://dx.doi.org/10.1021/acs.jpclett.0c00052 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Beke, Dávid
Valenta, Jan
Károlyházy, Gyula
Lenk, Sándor
Czigány, Zsolt
Márkus, Bence Gábor
Kamarás, Katalin
Simon, Ferenc
Gali, Adam
Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title_full Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title_fullStr Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title_full_unstemmed Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title_short Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
title_sort room-temperature defect qubits in ultrasmall nanocrystals
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307950/
https://www.ncbi.nlm.nih.gov/pubmed/32040330
http://dx.doi.org/10.1021/acs.jpclett.0c00052
work_keys_str_mv AT bekedavid roomtemperaturedefectqubitsinultrasmallnanocrystals
AT valentajan roomtemperaturedefectqubitsinultrasmallnanocrystals
AT karolyhazygyula roomtemperaturedefectqubitsinultrasmallnanocrystals
AT lenksandor roomtemperaturedefectqubitsinultrasmallnanocrystals
AT cziganyzsolt roomtemperaturedefectqubitsinultrasmallnanocrystals
AT markusbencegabor roomtemperaturedefectqubitsinultrasmallnanocrystals
AT kamaraskatalin roomtemperaturedefectqubitsinultrasmallnanocrystals
AT simonferenc roomtemperaturedefectqubitsinultrasmallnanocrystals
AT galiadam roomtemperaturedefectqubitsinultrasmallnanocrystals