Cargando…
Room-Temperature Defect Qubits in Ultrasmall Nanocrystals
[Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we pr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307950/ https://www.ncbi.nlm.nih.gov/pubmed/32040330 http://dx.doi.org/10.1021/acs.jpclett.0c00052 |
_version_ | 1783548905708847104 |
---|---|
author | Beke, Dávid Valenta, Jan Károlyházy, Gyula Lenk, Sándor Czigány, Zsolt Márkus, Bence Gábor Kamarás, Katalin Simon, Ferenc Gali, Adam |
author_facet | Beke, Dávid Valenta, Jan Károlyházy, Gyula Lenk, Sándor Czigány, Zsolt Márkus, Bence Gábor Kamarás, Katalin Simon, Ferenc Gali, Adam |
author_sort | Beke, Dávid |
collection | PubMed |
description | [Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000–1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization. |
format | Online Article Text |
id | pubmed-7307950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-73079502020-06-23 Room-Temperature Defect Qubits in Ultrasmall Nanocrystals Beke, Dávid Valenta, Jan Károlyházy, Gyula Lenk, Sándor Czigány, Zsolt Márkus, Bence Gábor Kamarás, Katalin Simon, Ferenc Gali, Adam J Phys Chem Lett [Image: see text] There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000–1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization. American Chemical Society 2020-02-10 2020-03-05 /pmc/articles/PMC7307950/ /pubmed/32040330 http://dx.doi.org/10.1021/acs.jpclett.0c00052 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Beke, Dávid Valenta, Jan Károlyházy, Gyula Lenk, Sándor Czigány, Zsolt Márkus, Bence Gábor Kamarás, Katalin Simon, Ferenc Gali, Adam Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title | Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title_full | Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title_fullStr | Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title_full_unstemmed | Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title_short | Room-Temperature Defect Qubits in Ultrasmall Nanocrystals |
title_sort | room-temperature defect qubits in ultrasmall nanocrystals |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307950/ https://www.ncbi.nlm.nih.gov/pubmed/32040330 http://dx.doi.org/10.1021/acs.jpclett.0c00052 |
work_keys_str_mv | AT bekedavid roomtemperaturedefectqubitsinultrasmallnanocrystals AT valentajan roomtemperaturedefectqubitsinultrasmallnanocrystals AT karolyhazygyula roomtemperaturedefectqubitsinultrasmallnanocrystals AT lenksandor roomtemperaturedefectqubitsinultrasmallnanocrystals AT cziganyzsolt roomtemperaturedefectqubitsinultrasmallnanocrystals AT markusbencegabor roomtemperaturedefectqubitsinultrasmallnanocrystals AT kamaraskatalin roomtemperaturedefectqubitsinultrasmallnanocrystals AT simonferenc roomtemperaturedefectqubitsinultrasmallnanocrystals AT galiadam roomtemperaturedefectqubitsinultrasmallnanocrystals |