Cargando…

Breaking the Quantum PIN Code of Atomic Synapses

[Image: see text] Atomic synapses represent a special class of memristors whose operation relies on the formation of metallic nanofilaments bridging two electrodes across an insulator. Due to the magnifying effect of this narrowest cross section on the device conductance, a nanometer-scale displacem...

Descripción completa

Detalles Bibliográficos
Autores principales: Török, Tímea Nóra, Csontos, Miklós, Makk, Péter, Halbritter, András
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307960/
https://www.ncbi.nlm.nih.gov/pubmed/31917589
http://dx.doi.org/10.1021/acs.nanolett.9b04617
_version_ 1783548908119523328
author Török, Tímea Nóra
Csontos, Miklós
Makk, Péter
Halbritter, András
author_facet Török, Tímea Nóra
Csontos, Miklós
Makk, Péter
Halbritter, András
author_sort Török, Tímea Nóra
collection PubMed
description [Image: see text] Atomic synapses represent a special class of memristors whose operation relies on the formation of metallic nanofilaments bridging two electrodes across an insulator. Due to the magnifying effect of this narrowest cross section on the device conductance, a nanometer-scale displacement of a few atoms grants access to various resistive states at ultimately low energy costs, satisfying the fundamental requirements of neuromorphic computing hardware. However, device engineering lacks the complete quantum characterization of such filamentary conductance. Here we analyze multiple Andreev reflection processes emerging at the filament terminals when superconducting electrodes are utilized. Thereby, the quantum PIN code, i.e., the transmission probabilities of each individual conduction channel contributing to the conductance of the nanojunctions, is revealed. Our measurements on Nb(2)O(5) resistive switching junctions provide profound experimental evidence that the onset of the high conductance ON state is manifested via the formation of truly atomic-sized metallic filaments.
format Online
Article
Text
id pubmed-7307960
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73079602020-06-23 Breaking the Quantum PIN Code of Atomic Synapses Török, Tímea Nóra Csontos, Miklós Makk, Péter Halbritter, András Nano Lett [Image: see text] Atomic synapses represent a special class of memristors whose operation relies on the formation of metallic nanofilaments bridging two electrodes across an insulator. Due to the magnifying effect of this narrowest cross section on the device conductance, a nanometer-scale displacement of a few atoms grants access to various resistive states at ultimately low energy costs, satisfying the fundamental requirements of neuromorphic computing hardware. However, device engineering lacks the complete quantum characterization of such filamentary conductance. Here we analyze multiple Andreev reflection processes emerging at the filament terminals when superconducting electrodes are utilized. Thereby, the quantum PIN code, i.e., the transmission probabilities of each individual conduction channel contributing to the conductance of the nanojunctions, is revealed. Our measurements on Nb(2)O(5) resistive switching junctions provide profound experimental evidence that the onset of the high conductance ON state is manifested via the formation of truly atomic-sized metallic filaments. American Chemical Society 2020-01-09 2020-02-12 /pmc/articles/PMC7307960/ /pubmed/31917589 http://dx.doi.org/10.1021/acs.nanolett.9b04617 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Török, Tímea Nóra
Csontos, Miklós
Makk, Péter
Halbritter, András
Breaking the Quantum PIN Code of Atomic Synapses
title Breaking the Quantum PIN Code of Atomic Synapses
title_full Breaking the Quantum PIN Code of Atomic Synapses
title_fullStr Breaking the Quantum PIN Code of Atomic Synapses
title_full_unstemmed Breaking the Quantum PIN Code of Atomic Synapses
title_short Breaking the Quantum PIN Code of Atomic Synapses
title_sort breaking the quantum pin code of atomic synapses
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307960/
https://www.ncbi.nlm.nih.gov/pubmed/31917589
http://dx.doi.org/10.1021/acs.nanolett.9b04617
work_keys_str_mv AT toroktimeanora breakingthequantumpincodeofatomicsynapses
AT csontosmiklos breakingthequantumpincodeofatomicsynapses
AT makkpeter breakingthequantumpincodeofatomicsynapses
AT halbritterandras breakingthequantumpincodeofatomicsynapses