Cargando…
A Bayesian mixture modeling approach for public health surveillance
Spatial monitoring of trends in health data plays an important part of public health surveillance. Most commonly, it is used to understand the etiology of a public health issue, to assess the impact of an intervention, or to provide detection of unusual behavior. In this article, we present a Bayesi...
Autores principales: | Boulieri, Areti, Bennett, James E, Blangiardo, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307974/ https://www.ncbi.nlm.nih.gov/pubmed/30252021 http://dx.doi.org/10.1093/biostatistics/kxy038 |
Ejemplares similares
-
Spatio-temporal model to estimate life expectancy and to detect unusual trends at the local authority level in England
por: Boulieri, Areti, et al.
Publicado: (2020) -
Advances in spatiotemporal models for non-communicable disease surveillance
por: Blangiardo, Marta, et al.
Publicado: (2020) -
Investigating trends in asthma and COPD through multiple data sources: A small area study
por: Boulieri, Areti, et al.
Publicado: (2016) -
Spatial and spatio-temporal bayesian models with R - INLA
por: Blangiardo, Marta, et al.
Publicado: (2015) -
A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips
por: Blangiardo, Marta, et al.
Publicado: (2008)