Cargando…
A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction
Electronic health records (EHRs) have been widely used to help physicians to make decisions by predicting medical events such as diseases, prescriptions, outcomes, and so on. How to represent patient longitudinal medical data is the key to making these predictions. Recurrent neural network (RNN) is...
Autores principales: | Liu, Sicen, Li, Tao, Ding, Haoyang, Tang, Buzhou, Wang, Xiaolong, Chen, Qingcai, Yan, Jun, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308113/ https://www.ncbi.nlm.nih.gov/pubmed/33727983 http://dx.doi.org/10.1007/s13042-020-01155-x |
Ejemplares similares
-
Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
por: Li, Tao, et al.
Publicado: (2021) -
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
por: Li, Haodi, et al.
Publicado: (2018) -
Entity recognition from clinical texts via recurrent neural network
por: Liu, Zengjian, et al.
Publicado: (2017) -
Drug-Drug Interaction Extraction via Convolutional Neural Networks
por: Liu, Shengyu, et al.
Publicado: (2016) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023)