Cargando…
Incorporating biological structure into machine learning models in biomedicine
In biomedical applications of machine learning, relevant information often has a rich structure that is not easily encoded as real-valued predictors. Examples of such data include DNA or RNA sequences, gene sets or pathways, gene interaction or coexpression networks, ontologies, and phylogenetic tre...
Autores principales: | Crawford, Jake, Greene, Casey S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308204/ https://www.ncbi.nlm.nih.gov/pubmed/31962244 http://dx.doi.org/10.1016/j.copbio.2019.12.021 |
Ejemplares similares
-
Photothermal therapy of copper incorporated nanomaterials for biomedicine
por: Wang, Rong, et al.
Publicado: (2023) -
Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes
por: Daskalaki, Elena, et al.
Publicado: (2016) -
Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine
por: Gu, Qiang, et al.
Publicado: (2021) -
Predictive Modelling Based on Statistical Learning in Biomedicine
por: Gefeller, Olaf, et al.
Publicado: (2017) -
Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor
por: Cazals, Frédéric, et al.
Publicado: (2013)