Cargando…
Peanut Sprout Extracts Cultivated with Fermented Sawdust Medium Inhibits Benign Prostatic Hyperplasia In Vitro and In Vivo
PURPOSE: In this study, we tested whether the resveratrol-enriched peanut sprout extracts cultivated with fermented sawdust medium (PSEFS) could suppress benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS: The mode of action of PSEFS was estimated by employing high-perfor...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Sexual Medicine and Andrology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308230/ https://www.ncbi.nlm.nih.gov/pubmed/32202087 http://dx.doi.org/10.5534/wjmh.190173 |
Sumario: | PURPOSE: In this study, we tested whether the resveratrol-enriched peanut sprout extracts cultivated with fermented sawdust medium (PSEFS) could suppress benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS: The mode of action of PSEFS was estimated by employing high-performance liquid chromatography analysis, MTT assay, cell counting, cell cycle analysis, immunoblots, and immunoprecipitation and electrophoretic mobility shift assay. In vivo efficacy of PSEFS was analyzed in BPH animal model via immunostaining and enzyme-linked immunosorbent assay. RESULTS: We selected the Yesan peanut sprout variety, which contains the highest level of resveratrol. The resveratrol levels in PSEFS were higher than those obtained with hydroponic technology. PSEFS treatment induced cell cycle arrest at the G1-phase by downregulating CDK4 and cyclin D1 via p21WAF1 induction in the RWPE-1 and WPMY prostate cells, thereby decreasing their proliferation. Treatment with PSEFS decreased ERK1/2 phosphorylation and increased JNK phosphorylation. The levels of DNA-bound transcription factors associated with proliferation (nuclear factor-κB, Sp-1, and AP-1) decreased upon PSEFS treatment in both prostate cells. Additionally, the levels of the molecular markers of BPH development (5α-reductase, androgen receptor, fibroblast growth factor, Bcl-2, and Bax) also changed by the addition of PSEFS. Finally, in a testosterone propionate-induced BPH model in rats, PSEFS administration attenuated the size, weight, and thickness of prostate tissues with no signs of death. CONCLUSIONS: These results showed that PSEFS inhibited BPH both in vitro and in vivo and might be useful in the development of a potential BPH therapy. |
---|