Cargando…
Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil
Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil mic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308567/ https://www.ncbi.nlm.nih.gov/pubmed/32269200 http://dx.doi.org/10.1264/jsme2.ME19143 |
_version_ | 1783549018179108864 |
---|---|
author | Fernandes, Ana Flavia Tonelli Wang, Ping Staley, Christopher Aparecida Silva Moretto, Jéssica Miguel Altarugio, Lucas Chagas Campanharo, Sarah Guedes Stehling, Eliana Jay Sadowsky, Michael |
author_facet | Fernandes, Ana Flavia Tonelli Wang, Ping Staley, Christopher Aparecida Silva Moretto, Jéssica Miguel Altarugio, Lucas Chagas Campanharo, Sarah Guedes Stehling, Eliana Jay Sadowsky, Michael |
author_sort | Fernandes, Ana Flavia Tonelli |
collection | PubMed |
description | Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase—the fourth step in the pathway—was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4(th) and 8(th) weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure. |
format | Online Article Text |
id | pubmed-7308567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles |
record_format | MEDLINE/PubMed |
spelling | pubmed-73085672020-06-23 Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil Fernandes, Ana Flavia Tonelli Wang, Ping Staley, Christopher Aparecida Silva Moretto, Jéssica Miguel Altarugio, Lucas Chagas Campanharo, Sarah Guedes Stehling, Eliana Jay Sadowsky, Michael Microbes Environ Regular Paper Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase—the fourth step in the pathway—was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4(th) and 8(th) weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure. Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2020 2020-04-09 /pmc/articles/PMC7308567/ /pubmed/32269200 http://dx.doi.org/10.1264/jsme2.ME19143 Text en 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Paper Fernandes, Ana Flavia Tonelli Wang, Ping Staley, Christopher Aparecida Silva Moretto, Jéssica Miguel Altarugio, Lucas Chagas Campanharo, Sarah Guedes Stehling, Eliana Jay Sadowsky, Michael Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title | Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title_full | Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title_fullStr | Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title_full_unstemmed | Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title_short | Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil |
title_sort | impact of atrazine exposure on the microbial community structure in a brazilian tropical latosol soil |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308567/ https://www.ncbi.nlm.nih.gov/pubmed/32269200 http://dx.doi.org/10.1264/jsme2.ME19143 |
work_keys_str_mv | AT fernandesanaflaviatonelli impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT wangping impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT staleychristopher impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT aparecidasilvamorettojessica impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT miguelaltarugiolucas impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT chagascampanharosarah impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT guedesstehlingeliana impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil AT jaysadowskymichael impactofatrazineexposureonthemicrobialcommunitystructureinabraziliantropicallatosolsoil |