Cargando…

The social brain in female autism: a structural imaging study of twins

A female advantage in social cognition (SoC) might contribute to women’s underrepresentation in autism spectrum disorder (ASD). The latter could be underpinned by sex differences in social brain structure. This study investigated the relationship between structural social brain networks and SoC in f...

Descripción completa

Detalles Bibliográficos
Autores principales: Cauvet, Élodie, van’t Westeinde, Annelies, Toro, Roberto, Kuja-Halkola, Ralf, Neufeld, Janina, Mevel, Katell, Bölte, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308659/
https://www.ncbi.nlm.nih.gov/pubmed/32363404
http://dx.doi.org/10.1093/scan/nsaa064
Descripción
Sumario:A female advantage in social cognition (SoC) might contribute to women’s underrepresentation in autism spectrum disorder (ASD). The latter could be underpinned by sex differences in social brain structure. This study investigated the relationship between structural social brain networks and SoC in females and males in relation to ASD and autistic traits in twins. We used a co-twin design in 77 twin pairs (39 female) aged 12.5 to 31.0 years. Twin pairs were discordant or concordant for ASD or autistic traits, discordant or concordant for other neurodevelopmental disorders or concordant for neurotypical development. They underwent structural magnetic resonance imaging and were assessed for SoC using the naturalistic Movie for the Assessment of Social Cognition. Autistic traits predicted reduced SoC capacities predominantly in male twins, despite a comparable extent of autistic traits in each sex, although the association between SoC and autistic traits did not differ significantly between the sexes. Consistently, within-pair associations between SoC and social brain structure revealed that lower SoC ability was associated with increased cortical thickness of several brain regions, particularly in males. Our findings confirm the notion that sex differences in SoC in association with ASD are underpinned by sex differences in brain structure.