Cargando…
The Power Gain Difference Method Analysis
In this paper, we propose a new approach to passively locate the 3D position of a signal source. This novel technique, called the power gain difference (PGD), is based only on measuring the received signal strength (RSS) with multiple sensors deployed in the area of interest, while the target transm...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308829/ https://www.ncbi.nlm.nih.gov/pubmed/32466511 http://dx.doi.org/10.3390/s20113018 |
Sumario: | In this paper, we propose a new approach to passively locate the 3D position of a signal source. This novel technique, called the power gain difference (PGD), is based only on measuring the received signal strength (RSS) with multiple sensors deployed in the area of interest, while the target transmit power or the equivalent isotropic radiated power (EIRP) is assumed to be unknown. Next, the signal source position is estimated using the knowledge of the ratios of RSS measured on different sensors. First, this article presents the geometric representation and the analytical solution of the model of the PGD technique. Second, the PGD dilution of precision was analyzed in order to gauge the accuracy of measuring the RSS. Finally, a numerical simulation of the performance of the proposed method was carried out and the results are discussed. It seems that the PGD technique has the potential to be a simple and effective solution of the 3D localization problem. |
---|