Cargando…
A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors
Here we propose a new machine learning algorithm for classification of human activities by means of accelerometer and gyroscope signals. Based on a novel hierarchical system of logistic regression classifiers and a relatively small set of features extracted from the filtered signals, the proposed al...
Autores principales: | Debache, Isaac, Jeantet, Lorène, Chevallier, Damien, Bergouignan, Audrey, Sueur, Cédric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308842/ https://www.ncbi.nlm.nih.gov/pubmed/32486068 http://dx.doi.org/10.3390/s20113090 |
Ejemplares similares
-
Associations of Sensor-Derived Physical Behavior with Metabolic Health: A Compositional Analysis in the Record Multisensor Study
por: Debache, Isaac, et al.
Publicado: (2019) -
Breaking up Sedentary Time in Overweight/Obese Adults on Work Days and Non-Work Days: Results from a Feasibility Study
por: De Jong, Nathan P., et al.
Publicado: (2018) -
Human Adaptation to Deep Space Environment: An Evolutionary Perspective of the Foreseen Interplanetary Exploration
por: Criscuolo, François, et al.
Publicado: (2020) -
Estimation of the Maternal Investment of Sea Turtles by Automatic Identification of Nesting Behavior and Number of Eggs Laid from a Tri-Axial Accelerometer
por: Jeantet, Lorène, et al.
Publicado: (2022) -
Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking
por: Jayasinghe, Udeni, et al.
Publicado: (2022)