Cargando…
A Machine Learning Method for Vision-Based Unmanned Aerial Vehicle Systems to Understand Unknown Environments
What makes unmanned aerial vehicles (UAVs) intelligent is their capability of sensing and understanding new unknown environments. Some studies utilize computer vision algorithms like Visual Simultaneous Localization and Mapping (VSLAM) and Visual Odometry (VO) to sense the environment for pose estim...
Autores principales: | Zhang, Tianyao, Hu, Xiaoguang, Xiao, Jin, Zhang, Guofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308845/ https://www.ncbi.nlm.nih.gov/pubmed/32517309 http://dx.doi.org/10.3390/s20113245 |
Ejemplares similares
-
Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles
por: Lin, Lishan, et al.
Publicado: (2019) -
Vision-Based SLAM System for Unmanned Aerial Vehicles
por: Munguía, Rodrigo, et al.
Publicado: (2016) -
Complex Environment Path Planning for Unmanned Aerial Vehicles
por: Zhang, Jing, et al.
Publicado: (2021) -
Handbook of unmanned aerial vehicles
por: Valavanis, Kimon, et al.
Publicado: (2015) -
Guidance of Unmanned Aerial Vehicles
por: Yanushevsky, Rafael
Publicado: (2011)