Cargando…
Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors
In this work, buckypaper composed of multi-walled carbon nanotubes (MWCNT) was prepared through a vacuum filtration process. The effect of MWCNT aspect ratio on the buckypaper performance was investigated. The freestanding and highly flexible buckypaper can be used as a sensor to attach on a complex...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308846/ https://www.ncbi.nlm.nih.gov/pubmed/32481770 http://dx.doi.org/10.3390/s20113067 |
Sumario: | In this work, buckypaper composed of multi-walled carbon nanotubes (MWCNT) was prepared through a vacuum filtration process. The effect of MWCNT aspect ratio on the buckypaper performance was investigated. The freestanding and highly flexible buckypaper can be used as a sensor to attach on a complex surface monitoring the strain and temperature at the critical area. The mechanical properties of the buckypaper were examined using the tensile and nanoindentation tests. The strain and temperature sensitivities of the buckypaper were evaluated through the four-point bending and thermal chamber tests, respectively. In addition, the microstructure and thermal stability of the buckypaper were studied by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. Experimental results showed that the mechanical properties such as Young’s modulus, tensile strength, fracture strain, and hardness of the buckypaper made of high aspect ratio MWCNTs were significantly superior to the buckypaper consisted of low aspect ratio MWCNTs, while the strain and temperature sensitivities of the buckypaper composed of low aspect ratio MWCNTs were better than that of the buckypaper made of high aspect ratio MWCNTs. |
---|