Cargando…
Outlier Detection Based on Residual Histogram Preference for Geometric Multi-Model Fitting
Geometric model fitting is a fundamental issue in computer vision, and the fitting accuracy is affected by outliers. In order to eliminate the impact of the outliers, the inlier threshold or scale estimator is usually adopted. However, a single inlier threshold cannot satisfy multiple models in the...
Autores principales: | Zhao, Xi, Zhang, Yun, Xie, Shoulie, Qin, Qianqing, Wu, Shiqian, Luo, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308856/ https://www.ncbi.nlm.nih.gov/pubmed/32471177 http://dx.doi.org/10.3390/s20113037 |
Ejemplares similares
-
Quantized Residual Preference Based Linkage Clustering for Model Selection and Inlier Segmentation in Geometric Multi-Model Fitting
por: Zhao, Qing, et al.
Publicado: (2020) -
Note on Histogram Fitting
por: Cowan, G
Publicado: (1993) -
Fit of Experimental Histograms: Bias of Fit Parameters
por: Redin, S I
Publicado: (2002) -
Using Person Fit Statistics to Detect Outliers in Survey Research
por: Felt, John M., et al.
Publicado: (2017) -
The DELPHI forward track fit: track fitting with outlier rejection
por: Frühwirth, R, et al.
Publicado: (1993)