Cargando…

Low Elevation Angle Estimation with Range Super-Resolution in Wideband Radar

Height detection of a low elevation angle target is crucial in radar applications. Due to the presence of the multiple path reflections, elevation angle estimation is difficult with conventional narrowband radar waveforms. The reflection ground area parameters are especially hard to obtain for model...

Descripción completa

Detalles Bibliográficos
Autores principales: Huan, Sha, Zhang, Man, Dai, Gane, Gan, Huaguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308873/
https://www.ncbi.nlm.nih.gov/pubmed/32486346
http://dx.doi.org/10.3390/s20113104
Descripción
Sumario:Height detection of a low elevation angle target is crucial in radar applications. Due to the presence of the multiple path reflections, elevation angle estimation is difficult with conventional narrowband radar waveforms. The reflection ground area parameters are especially hard to obtain for modeling. In this paper, we proposed a wideband, low elevation angle estimator based on range super-resolution, achieving a high robustness to variations in reflection coefficients. A relaxation (RELAX) algorithm was applied as the range super-resolution algorithm to separate the direct target echo and the reflected signal thanks to the relatively abundant frequency diversity. The grazing angle was obtained by synthesizing the steering vector of the direct signal and the range structure relationship between the two signal components. Theoretical analysis and simulation results confirmed the improved behavior of the proposed robust estimator in contrast to other conventional algorithms.