Cargando…
Low Elevation Angle Estimation with Range Super-Resolution in Wideband Radar
Height detection of a low elevation angle target is crucial in radar applications. Due to the presence of the multiple path reflections, elevation angle estimation is difficult with conventional narrowband radar waveforms. The reflection ground area parameters are especially hard to obtain for model...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308873/ https://www.ncbi.nlm.nih.gov/pubmed/32486346 http://dx.doi.org/10.3390/s20113104 |
Sumario: | Height detection of a low elevation angle target is crucial in radar applications. Due to the presence of the multiple path reflections, elevation angle estimation is difficult with conventional narrowband radar waveforms. The reflection ground area parameters are especially hard to obtain for modeling. In this paper, we proposed a wideband, low elevation angle estimator based on range super-resolution, achieving a high robustness to variations in reflection coefficients. A relaxation (RELAX) algorithm was applied as the range super-resolution algorithm to separate the direct target echo and the reflected signal thanks to the relatively abundant frequency diversity. The grazing angle was obtained by synthesizing the steering vector of the direct signal and the range structure relationship between the two signal components. Theoretical analysis and simulation results confirmed the improved behavior of the proposed robust estimator in contrast to other conventional algorithms. |
---|