Cargando…
An Efficient Orthonormalization-Free Approach for Sparse Dictionary Learning and Dual Principal Component Pursuit
Sparse dictionary learning (SDL) is a classic representation learning method and has been widely used in data analysis. Recently, the [Formula: see text]-norm ([Formula: see text]) maximization has been proposed to solve SDL, which reshapes the problem to an optimization problem with orthogonality c...
Autores principales: | Hu, Xiaoyin, Liu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308875/ https://www.ncbi.nlm.nih.gov/pubmed/32471176 http://dx.doi.org/10.3390/s20113041 |
Ejemplares similares
-
Stable Tensor Principal Component Pursuit: Error Bounds and Efficient Algorithms
por: Fang, Wei, et al.
Publicado: (2019) -
An efficient classification method based on principal component and sparse representation
por: Zhai, Lin, et al.
Publicado: (2016) -
Univalent functions and orthonormal systems
por: Milin, I M
Publicado: (1977) -
Principal Component Pursuit for Pattern Identification in Environmental Mixtures
por: Gibson, Elizabeth A., et al.
Publicado: (2022) -
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016)