Cargando…
Changes in Muscle Contractile Properties after Cold- or Warm-Water Immersion Using Tensiomyography: A Cross-Over Randomised Trial
Muscle contractile properties in clinical practice are often measured using either subjective scales or high-cost, inaccessible equipment. In this randomised cross-over study, we aimed to explore the use of tensiomyography (TMG) to assess changes in muscle contractile properties after cold- and warm...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308932/ https://www.ncbi.nlm.nih.gov/pubmed/32512785 http://dx.doi.org/10.3390/s20113193 |
Sumario: | Muscle contractile properties in clinical practice are often measured using either subjective scales or high-cost, inaccessible equipment. In this randomised cross-over study, we aimed to explore the use of tensiomyography (TMG) to assess changes in muscle contractile properties after cold- and warm-water immersion. The muscle contractile properties of the biceps femoris (BF) were assessed using TMG in 12 healthy active men (mean age 23 ± 3 years, Body Mass Index 22.9 ± 1.3 kg/m(2)) before and after a 20-min warm- or cold-water immersion over a period of 40 min. Muscle displacement (Dm) and contraction time (Tc) were registered as the main variables of the study. There was a significant condition by time interaction for Dm (p < 0.01). Post hoc analysis showed that, compared to the baseline, there was an increase in Dm 40 min after warm-water immersion (p < 0.01) and a decrease at 10 min after cold-water immersion (p < 0.01). No significant effect was found for Tc. Our results indicate that muscle contractile properties are affected by water temperature and time after the immersion; therefore, these factors should be taken into account when water-immersion is used as a recovery strategy. |
---|