Cargando…
Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application
Periodic cleaning of all frequently touched social areas such as walls, doors, locks, handles, windows has become the first line of defense against all infectious diseases. Among those, cleaning of large wall areas manually is always tedious, time-consuming, and astounding task. Although numerous cl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308965/ https://www.ncbi.nlm.nih.gov/pubmed/32531960 http://dx.doi.org/10.3390/s20113298 |
_version_ | 1783549114182533120 |
---|---|
author | Teng, Tey Wee Veerajagadheswar, Prabakaran Ramalingam, Balakrishnan Yin, Jia Elara Mohan, Rajesh Gómez, Braulio Félix |
author_facet | Teng, Tey Wee Veerajagadheswar, Prabakaran Ramalingam, Balakrishnan Yin, Jia Elara Mohan, Rajesh Gómez, Braulio Félix |
author_sort | Teng, Tey Wee |
collection | PubMed |
description | Periodic cleaning of all frequently touched social areas such as walls, doors, locks, handles, windows has become the first line of defense against all infectious diseases. Among those, cleaning of large wall areas manually is always tedious, time-consuming, and astounding task. Although numerous cleaning companies are interested in deploying robotic cleaning solutions, they are mostly not addressing wall cleaning. To this end, we are proposing a new vision-based wall following framework that acts as an add-on for any professional robotic platform to perform wall cleaning. The proposed framework uses Deep Learning (DL) framework to visually detect, classify, and segment the wall/floor surface and instructs the robot to wall follow to execute the cleaning task. Also, we summarized the system architecture of Toyota Human Support Robot (HSR), which has been used as our testing platform. We evaluated the performance of the proposed framework on HSR robot under various defined scenarios. Our experimental results indicate that the proposed framework could successfully classify and segment the wall/floor surface and also detect the obstacle on wall and floor with high detection accuracy and demonstrates a robust behavior of wall following. |
format | Online Article Text |
id | pubmed-7308965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73089652020-06-25 Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application Teng, Tey Wee Veerajagadheswar, Prabakaran Ramalingam, Balakrishnan Yin, Jia Elara Mohan, Rajesh Gómez, Braulio Félix Sensors (Basel) Article Periodic cleaning of all frequently touched social areas such as walls, doors, locks, handles, windows has become the first line of defense against all infectious diseases. Among those, cleaning of large wall areas manually is always tedious, time-consuming, and astounding task. Although numerous cleaning companies are interested in deploying robotic cleaning solutions, they are mostly not addressing wall cleaning. To this end, we are proposing a new vision-based wall following framework that acts as an add-on for any professional robotic platform to perform wall cleaning. The proposed framework uses Deep Learning (DL) framework to visually detect, classify, and segment the wall/floor surface and instructs the robot to wall follow to execute the cleaning task. Also, we summarized the system architecture of Toyota Human Support Robot (HSR), which has been used as our testing platform. We evaluated the performance of the proposed framework on HSR robot under various defined scenarios. Our experimental results indicate that the proposed framework could successfully classify and segment the wall/floor surface and also detect the obstacle on wall and floor with high detection accuracy and demonstrates a robust behavior of wall following. MDPI 2020-06-10 /pmc/articles/PMC7308965/ /pubmed/32531960 http://dx.doi.org/10.3390/s20113298 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Teng, Tey Wee Veerajagadheswar, Prabakaran Ramalingam, Balakrishnan Yin, Jia Elara Mohan, Rajesh Gómez, Braulio Félix Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title | Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title_full | Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title_fullStr | Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title_full_unstemmed | Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title_short | Vision Based Wall Following Framework: A Case Study With HSR Robot for Cleaning Application |
title_sort | vision based wall following framework: a case study with hsr robot for cleaning application |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308965/ https://www.ncbi.nlm.nih.gov/pubmed/32531960 http://dx.doi.org/10.3390/s20113298 |
work_keys_str_mv | AT tengteywee visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication AT veerajagadheswarprabakaran visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication AT ramalingambalakrishnan visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication AT yinjia visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication AT elaramohanrajesh visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication AT gomezbrauliofelix visionbasedwallfollowingframeworkacasestudywithhsrrobotforcleaningapplication |