Cargando…
Spatiotemporal Interaction Residual Networks with Pseudo3D for Video Action Recognition
Action recognition is a significant and challenging topic in the field of sensor and computer vision. Two-stream convolutional neural networks (CNNs) and 3D CNNs are two mainstream deep learning architectures for video action recognition. To combine them into one framework to further improve perform...
Autores principales: | Chen, Jianyu, Kong, Jun, Sun, Hui, Xu, Hui, Liu, Xiaoli, Lu, Yinghua, Zheng, Caixia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308980/ https://www.ncbi.nlm.nih.gov/pubmed/32492842 http://dx.doi.org/10.3390/s20113126 |
Ejemplares similares
-
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
AR3D: Attention Residual 3D Network for Human Action Recognition
por: Dong, Min, et al.
Publicado: (2021) -
Multi-Modal Residual Perceptron Network for Audio–Video Emotion Recognition
por: Chang, Xin, et al.
Publicado: (2021) -
Two-Level Attention Module Based on Spurious-3D Residual Networks for Human Action Recognition
por: Chen, Bo, et al.
Publicado: (2023) -
Recognition of the ligand-induced spatiotemporal residue pair pattern of β2-adrenergic receptors using 3-D residual networks trained by the time series of protein distance maps
por: Han, Minwoo, et al.
Publicado: (2022)