Cargando…
Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach
Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308996/ https://www.ncbi.nlm.nih.gov/pubmed/32587900 http://dx.doi.org/10.12688/wellcomeopenres.15819.3 |
_version_ | 1783549121398833152 |
---|---|
author | Carrillo-Larco, Rodrigo M. Castillo-Cara, Manuel |
author_facet | Carrillo-Larco, Rodrigo M. Castillo-Cara, Manuel |
author_sort | Carrillo-Larco, Rodrigo M. |
collection | PubMed |
description | Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions: A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data. |
format | Online Article Text |
id | pubmed-7308996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-73089962020-06-24 Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach Carrillo-Larco, Rodrigo M. Castillo-Cara, Manuel Wellcome Open Res Research Article Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions: A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data. F1000 Research Limited 2020-06-15 /pmc/articles/PMC7308996/ /pubmed/32587900 http://dx.doi.org/10.12688/wellcomeopenres.15819.3 Text en Copyright: © 2020 Carrillo-Larco RM and Castillo-Cara M http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Carrillo-Larco, Rodrigo M. Castillo-Cara, Manuel Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title | Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title_full | Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title_fullStr | Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title_full_unstemmed | Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title_short | Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach |
title_sort | using country-level variables to classify countries according to the number of confirmed covid-19 cases: an unsupervised machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308996/ https://www.ncbi.nlm.nih.gov/pubmed/32587900 http://dx.doi.org/10.12688/wellcomeopenres.15819.3 |
work_keys_str_mv | AT carrillolarcorodrigom usingcountrylevelvariablestoclassifycountriesaccordingtothenumberofconfirmedcovid19casesanunsupervisedmachinelearningapproach AT castillocaramanuel usingcountrylevelvariablestoclassifycountriesaccordingtothenumberofconfirmedcovid19casesanunsupervisedmachinelearningapproach |