Cargando…
Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach
Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevan...
Autores principales: | Carrillo-Larco, Rodrigo M., Castillo-Cara, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308996/ https://www.ncbi.nlm.nih.gov/pubmed/32587900 http://dx.doi.org/10.12688/wellcomeopenres.15819.3 |
Ejemplares similares
-
Development, validation, and application of a machine learning model to estimate salt consumption in 54 countries
por: Guzman-Vilca, Wilmer Cristobal, et al.
Publicado: (2022) -
Clusters of people with type 2 diabetes in the general population: unsupervised machine learning approach using national surveys in Latin America and the Caribbean
por: Carrillo-Larco, Rodrigo M, et al.
Publicado: (2021) -
Phenotypes of non-alcoholic fatty liver disease (NAFLD) and all-cause mortality: unsupervised machine learning analysis of NHANES III
por: Carrillo-Larco, Rodrigo M, et al.
Publicado: (2022) -
Street images classification according to COVID-19 risk in Lima, Peru: a convolutional neural networks feasibility analysis
por: Carrillo-Larco, Rodrigo M, et al.
Publicado: (2022) -
Machine learning health-related applications in low-income and middle-income countries: a scoping review protocol
por: Carrillo-Larco, Rodrigo M, et al.
Publicado: (2020)