Cargando…
Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection
Electroencephalogram (EEG) signals have been widely used in emotion recognition. However, the current EEG-based emotion recognition has low accuracy of emotion classification, and its real-time application is limited. In order to address these issues, in this paper, we proposed an improved feature s...
Autores principales: | Li, Zina, Qiu, Lina, Li, Ruixin, He, Zhipeng, Xiao, Jun, Liang, Yan, Wang, Fei, Pan, Jiahui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309000/ https://www.ncbi.nlm.nih.gov/pubmed/32471047 http://dx.doi.org/10.3390/s20113028 |
Ejemplares similares
-
Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization
por: Qi, Yingji, et al.
Publicado: (2020) -
Particle Swarm Optimization Based Feature Enhancement and Feature Selection for Improved Emotion Recognition in Speech and Glottal Signals
por: Muthusamy, Hariharan, et al.
Publicado: (2015) -
Advances in Multimodal Emotion Recognition Based on Brain–Computer Interfaces
por: He, Zhipeng, et al.
Publicado: (2020) -
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015) -
Competitive Particle Swarm Optimization for Multi-Category Text Feature Selection
por: Lee, Jaesung, et al.
Publicado: (2019)