Cargando…
Towards Robust and Accurate Detection of Abnormalities in Musculoskeletal Radiographs with a Multi-Network Model
This study proposes a novel multi-network architecture consisting of a multi-scale convolution neural network (MSCNN) with fully connected graph convolution network (GCN), named MSCNN-GCN, for the detection of musculoskeletal abnormalities via musculoskeletal radiographs. To obtain both detailed and...
Autores principales: | Liang, Shuang, Gu, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309003/ https://www.ncbi.nlm.nih.gov/pubmed/32498374 http://dx.doi.org/10.3390/s20113153 |
Ejemplares similares
-
A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs
por: He, Minliang, et al.
Publicado: (2021) -
Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It’s Free!)
por: Requena-Méndez, Ana, et al.
Publicado: (2015) -
Toward Accurate and Robust Environmental Surveillance Using Metagenomics
por: Shen, Jiaxian, et al.
Publicado: (2021) -
Hybrid Deep Learning Approach for Automatic Detection in Musculoskeletal Radiographs
por: Singh, Gurpreet, et al.
Publicado: (2022) -
Towards an accurate and robust analysis pipeline for somatic mutation calling
por: Jin, Jingjie, et al.
Publicado: (2022)