Cargando…

PortWeather: A Lightweight Onboard Solution for Real-Time Weather Prediction

Maritime journeys significantly depend on weather conditions, and so meteorology has always had a key role in maritime businesses. Nowadays, the new era of innovative machine learning approaches along with the availability of a wide range of sensors and microcontrollers creates increasing perspectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Karvelis, Petros, Mazzei, Daniele, Biviano, Matteo, Stylios, Chrysostomos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309033/
https://www.ncbi.nlm.nih.gov/pubmed/32503318
http://dx.doi.org/10.3390/s20113181
Descripción
Sumario:Maritime journeys significantly depend on weather conditions, and so meteorology has always had a key role in maritime businesses. Nowadays, the new era of innovative machine learning approaches along with the availability of a wide range of sensors and microcontrollers creates increasing perspectives for providing on-board reliable short-range forecasting of main meteorological variables. The main goal of this study is to propose a lightweight on-board solution for real-time weather prediction. The system is composed of a commercial weather station integrated with an industrial IOT-edge data processing module that computes the wind direction and speed forecasts without the need of an Internet connection. A regression machine learning algorithm was chosen so as to require the smallest amount of resources (memory, CPU) and be able to run in a microcontroller. The algorithm has been designed and coded following specific conditions and specifications. The system has been tested on real weather data gathered from static weather stations and onboard during a test trip. The efficiency of the system has been proven through various error metrics.