Cargando…
Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals
Application of deep learning (DL) to the field of healthcare is aiding clinicians to make an accurate diagnosis. DL provides reliable results for image processing and sensor interpretation problems most of the time. However, model uncertainty should also be thoroughly quantified. This paper therefor...
Autores principales: | Stoean, Catalin, Stoean, Ruxandra, Atencia, Miguel, Abdar, Moloud, Velázquez-Pérez, Luis, Khosravi, Abbas, Nahavandi, Saeid, Acharya, U. Rajendra, Joya, Gonzalo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309035/ https://www.ncbi.nlm.nih.gov/pubmed/32471077 http://dx.doi.org/10.3390/s20113032 |
Ejemplares similares
-
UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection
por: Abdar, Moloud, et al.
Publicado: (2023) -
A hybrid unsupervised—Deep learning tandem for electrooculography time series analysis
por: Stoean, Ruxandra, et al.
Publicado: (2020) -
Support vector machines and evolutionary algorithms for classification: single or together?
por: Stoean, Catalin, et al.
Publicado: (2014) -
Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations
por: Stoean, Catalin, et al.
Publicado: (2019) -
Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers
por: Velázquez-Perez, Luis, et al.
Publicado: (2009)